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Abstract Understanding the response of the terrestrial biospheric carbon cycle to variability in enviroclimatic
drivers is critical for predicting climate-carbon interactions. Here we apply an atmospheric-inversion-based
framework to assess the relationships between the spatiotemporal patterns of net ecosystem CO, exchange
(NEE) and those of enviroclimatic drivers. We show that those relationships can be directly observed at
1°% 1° 3-hourly resolution from atmospheric CO, measurements for four of seven large biomes in North
America, namely, (i) boreal forests and taiga; (i) temperate coniferous forests; (i) temperate grasslands, savannas,
and shrublands; and (iv) temperate broadleaf and mixed forests. We find that shortwave radiation plays a
dominant role during the growing season over all four biomes. Specific humidity and precipitation also play
key roles and are associated with decreased CO, uptake (or increased release). The explanatory power of specific
humidity is especially strong during transition seasons, while that of precipitation appears during both the
growing and dormant seasons. We further find that the ability of four prototypical terrestrial biospheric models
(TBM:s) to represent the spatiotemporal variability of NEE improves as the influence of radiation becomes more
dominant, implying that TBMs have a better skill in representing the impact of radiation relative to other drivers.
Even so, we show that TBMs underestimate the strength of the relationship to radiation and do not fully capture
its seasonality. Furthermore, the TBMs appear to misrepresent the relationship to precipitation and specific
humidity at the examined scales, with relationships that are not consistent in terms of sign, seasonality, or
significance relative to observations. More broadly, we demonstrate the feasibility of directly probing
relationships between NEE and enviroclimatic drivers at scales with no direct measurements of NEE, opening
the door to the study of emergent processes across scales and to the evaluation of their scaling within TBMs.

1. Introduction

Relationships between enviroclimatic drivers and land-atmosphere carbon exchange can potentially inform
the climate sensitivities of the land carbon sink and the environmental processes controlling this sink.
Diagnosing, understanding, and correctly representing these relationships within terrestrial biospheric
models (TBMs) is therefore critical for predicting the future dynamics of the global biogeochemical carbon
cycle and its interaction with the Earth climate system [Cox et al., 2013; Piao et al., 2013; Yi et al., 2010].

By examining the spatial and/or temporal variability of net ecosystem CO, exchange (NEE) and its covariance
with enviroclimatic drivers, previous observation-based studies found that strong relationships exist between
those drivers and NEE, and that those relationships vary substantially across spatiotemporal scales. Globally,
for example, the interannual variability of the observed atmospheric CO, growth rate, which is
representative of global land carbon uptake, has been shown to be correlated with the El Nifio-Southern
Oscillation index and tropical temperatures [Cox et al., 2013; Heimann and Reichstein, 2008; Wang et al,, 2013;
X. Wang et al., 2014]. Hemispherically, the interannual variability in the satellite-derived atmospheric CO,
growth rate shows a positive correlation with the boreal warm season surface temperature anomaly
[Schneising et al, 2014]. At much smaller spatial scales, where NEE can be quantified using the eddy
covariance technique (ie., ~1km?), the temporal variability of NEE has been shown to be predominately
driven by enviroclimatic drivers including temperature, humidity, and precipitation on daily to seasonal
scales [Law et al., 2002; Mueller et al, 2010; Yadav et al., 2010]. For example, Mueller et al. [2010] found that
linear relationships with a limited number of drivers can explain around 80% (90%) of the daily (monthly)
NEE variability. Spatial patterns of CO, fluxes have also been found to be sensitive to enviroclimatic drivers,
with the dominant drivers varying across regions [Beer et al., 2010; Yi et al., 2010; Yu et al., 2013].

Relationships between NEE and enviroclimatic drivers diagnosed directly from the observed spatiotemporal
variability of carbon fluxes can be used to evaluate process-based terrestrial biospheric models (TBMs) and
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inform the further development of these models [e.g., Piao et al., 2013; Wang et al., 2013; X. Wang et al.,
2014]. For example, by examining the responses of carbon fluxes to climate variability and atmospheric
CO, trends from both TBMs and observations, Piao et al. [2013] found that TBMs tend to overestimate the
sensitivity of net biome productivity to atmospheric CO, and precipitation and attributed these process-
level biases to the lack of representation of nutrient limitation in the current generation of TBMs. By
examining the interannual variability of the atmospheric CO, growth rate, X. Wang et al. [2014] found that
TBMs do not reproduce the stronger responses of the atmospheric CO, growth rate to increased tropical
temperatures during the past five decades, suggesting a potential limitation in the representation of the
impact of drought on tropical ecosystems.

Improving the process-level representation of biogeochemical cycles requires a better understanding of key
drivers across a full spectrum of spatiotemporal scales. Of particular interest are scales corresponding to
typical resolutions of TBMs run for regional to continental analyses. Fang et al. [2014] used atmospheric
CO, mixing ratio measurements to evaluate the spatiotemporal patterns of NEE at 3-hourly and 1°x 1°
resolution, as predicted by several TBMs. Results showed that TBMs face challenges in simulating
spatiotemporal NEE variability at such scales, especially during transition seasons, indicating a need to
better understand environmental processes controlling variability at these scales. In response to this need,
we propose here the use of atmospheric CO, mixing ratio measurements to evaluate the ability of TBMs to
represent relationships between the NEE spatiotemporal variability and major enviroclimatic drivers at
these same scales. We term these “fine scales” in the discussion that follows, as they are near the high end
of resolutions that have been examined within the context of regional atmospheric inverse modeling studies.

Our study is inspired by, and builds upon, a series of previous efforts. Gourdji et al. [2012] showed that
environmental processes controlling the fine-scale spatiotemporal variability of NEE can be inferred from
atmospheric CO, measurements collected from a limited number of towers in North America. Using a
larger observational data set, Fang et al. [2014] found that atmospheric CO, data can inform the
performance of TBMs in simulating the fine-scale spatiotemporal variability of NEE within specific biomes
and months. Furthermore, Huntzinger et al. [2011] used TBM predictions of NEE to compare relationships
between enviroclimatic drivers and NEE as predicted by different models. Together, these earlier studies
suggest that it is possible to build a framework for using atmospheric CO, measurements to evaluate
TBMs based on how they simulate relationships between fine-scale NEE spatiotemporal variability and
enviroclimatic drivers. Results from such evaluations can be used to inform process-level TBM development.

In this paper, we therefore present a framework for (1) diagnosing relationships between NEE and
enviroclimatic drivers using atmospheric observations for North America, (2) evaluating the same
relationships from NEE simulations from four TBMs participating in the North American Carbon Program
(NACP) Regional Interim Synthesis (RIS) [Huntzinger et al., 2012], and (3) relating TBM performance to the
ability of the TBM to represent relationships between NEE and enviroclimatic drivers that are observable
from atmospheric measurements.

2, Data and Methods
2.1. Atmospheric CO, Observations

We use continuous atmospheric CO, mixing ratio measurements from 35 towers (Figure S1 and Table S1 in
the supporting information) available in 2008. The tower network includes the following: (1) nine towers
operated by the Global Monitoring Division of NOAA's Earth Research Laboratory [Andrews et al., 2014],
located in Park Falls, Wisconsin (LEF), Moody, Texas (WKT), West Branch, lowa (WBI), Boulder Atmospheric
Observatory, Colorado (BAO), Argyle, Maine (AMT), South Carolina Tower, South Carolina (SCT) and Walnut
Grove, California (WGC), Shenandoah National Park, Virginia (SNP), and Barrow, Alaska (BRW) [Thoning
et al.,, 2014]; (2) seven towers supported by the Mid-Continental Intensive project, located in Canaan Valley,
West Virginia (CVA), Missouri Ozarks, Missouri (OZA) [Stephens et al., 2011], Kewanee, lllinois (KEW),
Centerville, lowa (CEN), Mead, Nebraska (MEA), Round Lake, Missouri (ROL), and Galesville, Wisconsin (GAL)
[Richardson et al., 2011]; (3) three towers within the Regional Atmospheric Continuous CO, Network in the
Rocky Mountains (RACCOON) [Stephens et al., 2011], located in Storm Peak Lab, Colorado (SPL), Niwot
Ridge, Colorado (NWR), and Hidden Peak Snowbird, Utah (HDP); (4) seven towers supported by
Environment Canada, located in Fraserdale, Ontario (FRD), Egbert, Ontario (EGB), Candle Lake,
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Saskatcheway (CDL), East Trout Lake, Saskatchewan (ETL), Sable Island, Nova Scotia (SBL), Lac LaBiche, Alberta
(LLB), and Chibougamau, Quebec (CHI); (5) five Oregon towers operated by Oregon State University [G6ckede
et al., 2010], including the Fir (FIR), Metolius (MET), Yaquina Head (YAH), Mary’s Peak (MAP), and Burns Old
(NGB); and (6) four additional towers, located at the Harvard Forest, Massachusetts (HFM) [Urbanski et al.,
20071, Morgan Monroe State Forest, lllinois (MMS) [Dragoni et al., 2007; Schmid et al., 2000], Southern Great
Plains, Oklahoma (SGP), and La Jolla, CA (LJA) [Keeling et al., 2005].

CO, measurements from these towers were first filtered to exclude data with low-quality flags and extreme
outliers (defined as observations that were more than three times the interquartile range away from the
upper/lower quantile). The filtered measurements were then averaged to a 3-hourly timescale. The 3-hourly
observations were further filtered if they are more than 30 ppm over background air or if their sensitivity to
ocean fluxes was greater than 85% of their total sensitivity to ocean and land [Gourdiji et al., 2012].

For this study, we further avoided measurements that are likely to be strongly affected by errors in
atmospheric transport models, as in Gourdji et al. [2012] and Shiga et al. [2014]: for all tall towers with a
height over 300 m, data from all hours of the day are used; only afternoon data are used for most short
towers (lower than 100 m), while nighttime data are used for sites in complex terrain (e.g., NWR) (see
Table S1 for details). In addition, following Fang et al. [2014], we remove data that are strongly influenced
by fluxes in only a few grid cells, in order to exclude data that are likely sensitive to any systematic
transport model errors [Gickede et al., 2010; Gourdiji et al., 2012; Peters et al., 2007]. The effects of boundary
conditions [GLOBALVIEW-CO,, 2010] and fossil fuel CO, emissions are presubtracted from atmospheric
measurements as described in Fang et al. [2014].

2.2. Sensitivity of Atmospheric CO, Measurements to Surface Fluxes and Simulated Terrestrial Fluxes

The sensitivity of available atmospheric CO, measurements to underlying CO, fluxes (i.e., footprints, in units
of ppmv/(umol m™2s™")) is derived as in Gourdji et al. [2012], using the Stochastic Time-Inverted Lagrangian
Transport (STILT) model [Lin et al., 2003] driven by the Weather Research and Forecast (WRF) model
[Skamarock and Klemp, 2008].

Simulated NEE at a 3-hourly and 1° X 1° resolution is obtained from the NACP RIS runs [Huntzinger et al., 2012]
of four TBMs: CASA-GFED [van der Werf et al., 2006], SiB3 [Baker et al., 2008], ORCHIDEE [Krinner et al., 2005],
and VEGAS2 [Zeng et al., 2005]. These four simulations were selected for analysis because of the availability of
3-hourly NEE flux output. Details of those models are shown in Fang et al. [2014] and Huntzinger et al. [2012].

2.3. Enviroclimatic Drivers

In addition to the data sets above, this study also uses multiple enviroclimatic driver data sets (all at a 3-hourly
and 1°x1° resolution) from the North American Regional Reanalysis (NARR) [Mesinger et al, 2006]. These
drivers include precipitation, as well as two derived precipitation indices, namely the average precipitation
over the previous 16 and 30 day intervals. These latter two are used to capture the potential lagged responses
of NEE to precipitation. We also include specific humidity, relative humidity, and air temperature (at 2 m above
ground), as well as downward shortwave radiation, snow depth, and snow cover. This superset of NARR
variables primarily relates to water fluxes and availability, temperature and shortwave radiation. Note that the
enviroclimatic driver data sets used here (from NARR) do not necessarily correspond to the data used to drive
the TBMs assessed in this study: SiB3 uses NARR data sets, while the other models use data from other sources.

2.4. Statistical Framework Linking CO, Observations to Enviroclimatic Drivers

The main goal of this study is to evaluate TBM performance in simulating the relationship between fine-scale
(defined at 1°x 1° spatial and 3-hourly temporal resolution) NEE spatiotemporal variability and major
enviroclimatic drivers within specific biomes and months. This goal is achieved through an atmospheric
inversion framework designed to identify the enviroclimatic drivers that best represent the fine-scale
spatiotemporal variability of NEE within 84 biome-month combinations (i.e., seven aggregate North
American biomes defined as in Figure S1 and 12 months of the year 2008). Due to the coverage of the
observation network, results are only interpreted for the four biomes identified to be better constrained
by Fang et al. [2014], namely, (1) boreal forests and taiga; (2) temperate coniferous forests; (3) temperate
grasslands, savannas, and shrublands; and (4) temperate broadleaf and mixed forests (Figure S1), where
atmospheric CO, measurements provide sufficient constraints to inform the underlying spatiotemporal
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patterns of NEE. The framework is applied both to real atmospheric CO, observations and to simulated
observations based on NEE as predicted by each of the examined TBMs.

Similarly to Fang et al. [2014], we model the atmospheric observations using a linear mixed model, building
on the geostatistical inverse modeling framework [Gourdji et al., 2010, 2012; Michalak et al., 2004], to relate
enviroclimatic drivers to NEE fluxes that are not directly observed but that can be assessed via their
influence on atmospheric CO, measurements:

z=HXp+HE+¢ (1)

Where zis an n x 1 vector of atmospheric CO, observation (with the influence of boundary conditions and fossil
fuel emissions removed see section 2.1). H (n x m) are the sensitivity footprints as quantified using STILT (see
section 2.2), representing the sensitivity of each observation (dimension of n) to flux at 3-hourly and 1°x 1°
resolution (dimension of m); X (m x p) is a matrix of p ancillary variables used to explain the NEE spatiotemporal
variability; B is a px 1 vector that represents the unknown drift coefficients describing the relationships
between ancillary variables (i.e., columns of X) and NEE; and Xp together thus represents a statistical model
of the trend for describing NEE. Each ancillary variable can be either simulated NEE from a TBM in a specific
biome-month as in Fang et al. [2014] or a NARR variable, both defined only within a specific biome-month
combination, i.e., defined only for those rows corresponding to fluxes within a specific biome-month
combination, while the remainder of the column is filled with zeros. & (m x 1) represents the portion of the
variability of NEE that is evident from the atmospheric observations but that cannot be explained by the
ancillary variables in X. Finally, £ (n x 1) is the model-data mismatch term that represents any discrepancies
between observed (z) and modeled (HXp + HE) CO, mixing ratios. Except as detailed above, all variables in
equation (1) are as defined as in Fang et al. [2014].

The selection of ancillary variables to be included in X represents a classical statistical model selection
problem, i.e., determining which predictor variables (ancillary variables as columns in X, either NARR
enviroclimatic drivers or simulated NEE) are important in explaining the variability in the atmospheric CO,
measurements. As in Fang et al. [2014], we use the Bayesian information criterion (BIC) to select the
optimal set of covariates, where BIC takes into account both the goodness of fit and the numbers of
ancillary variables in each candidate model to inform model selection.

Finally, the estimated drift coefficients f associated with each selected ancillary variable and their uncertainty
covariances (VP) are obtained as in Gourdji et al. [2012]:

= ((l—GC)TE*1 (HXC))J(HXC)TZJz )
VB = (X H'ZHX,) ™ 3)

Here Tis the matrix transpose operator, X includes the final selected ancillary variables, the f values are the
estimated drift coefficients (i.e., fixed effects) in the linear model, and X is the covariance of the model
residuals (i.e., the covariance of HE + €), defined as follows:

Y =HQH” +R (4)

where Q (m X m) is a covariance matrix describing how & is correlated in space and time and is modeled using
an exponential covariance model, while R (nxn) is a diagonal covariance matrix with the variance of «.
The specific parameters defining Q and R vary between the various experiments and are described in section 2.5.
The diagonal elements of V; represent the uncertainties of the estimated f values.

This framework is built on linear relationships between the NEE spatiotemporal variability and enviroclimatic
drivers. Such relationships are chosen because, although more complex relationships certainly exist at the
process level, earlier studies have found that even simple linear relationships can explain a large portion of
the variability in carbon fluxes from site level to hemispheric and global scales, and from daily to annual
scales [Mueller et al., 2010; Piao et al., 2013; Schneising et al., 2014; Wang et al., 2013; Yadav et al., 2010].
Such relationships also facilitate the intercomparison of the derived relationships across drivers and across
models, and yield a parsimonious model that can effectively leverage the limited information content of
atmospheric observations.
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2.5. Experiments
In this section, we describe the experiments conducted to fulfill the objectives outlined in section 1.

The RD-NARR experiment uses real atmospheric CO, data (RD) and NARR data as ancillary variables (NARR)
and is designed (1) to identify the enviroclimatic drivers within specific biome-month combinations that
contribute most to explaining the observed variability in atmospheric CO, and (2) to estimate the drift
coefficients defining the linear relationships between those drivers and the spatiotemporal variability of
NEE within those biome-month combinations. The covariance parameters needed for Q and R are
estimated using the Restricted Maximum Likelihood approach using the atmospheric observations
themselves and the final selected ancillary variables (X.) [e.g., Gourdji et al., 2010, 2012; Michalak et al., 2004].

The SD-NARR suite of experiments uses synthetic atmospheric CO, data (SD) generated using simulated NEE
from each of the four examined TBMs and the footprints in H (i.e., zsp=HStgm), and NARR data as ancillary
variables (NARR). These four experiments are designed to identify the enviroclimatic drivers within specific
biome-month combinations that would contribute most to explaining the observed variability in
atmospheric CO, if indeed the true fluxes were consistent with those simulated by one of the TBMs
examined here. In analogy to the RD-NARR experiment, these experiments also estimate the drift coefficients
defining the linear relationship between those drivers and the spatiotemporal variability of NEE within those
biome-month combinations. For simplicity, the synthetic observations do not include the influence of fossil
fuel emissions or boundary conditions. To ensure a fair comparison with the RD-NARR experiment, however,
in each case the synthetic observations include model-data mismatch errors with variances equal to those
estimated from RD-NARR and included in R. Those model-data mismatch errors represent the transport
model, measurements and aggregation errors, as well as errors in the boundary conditions. To be
conservative, the Q parameters for each SD-NARR experiment are estimated based on the full variability of
NEE from a particular TBM [Gourdiji et al., 2008, 2010; Mueller et al., 2008].

We use results obtained from the RD-one-&e suite of experiments in Fang et al. [2014] to complete the analysis,
which used real atmospheric CO, data (RD) and fluxes from one of the individual TBMs as the ancillary variables
for each of the four experiments. This experiment was designed to identify whether the spatiotemporal
variability of NEE as simulated by a specific TBM contributed substantially toward explaining the observed
variability in atmospheric CO,.

Results for all experiments are interpreted for the four biomes considered here (boreal forests and taiga; temperate
coniferous forests; temperate grasslands, savannas, and shrublands; and temperate broadleaf and mixed forests),
as identified in Fang et al. [2014]. Together, these experiments make it possible to explore the skill of TBMs in
simulating the relationship between NEE spatiotemporal variability and major enviroclimatic drivers.

3. Results

3.1. Relationships Between NEE Spatiotemporal Variability and Enviroclimatic Drivers as Observed
From Atmospheric Measurements

Results from the case study linking atmospheric CO, observations to enviroclimatic drivers (RD-NARR) show
that relationships between NEE spatiotemporal variability and enviroclimatic drivers can indeed be inferred
from atmospheric CO, data. Overall, linear relationships are identified for 75% of biome-month combinations
for the four biomes previously shown to be relatively well constrained by atmospheric CO, observations
(Figure 1). Such linear relationships have also previously been observed in site level flux studies [Hui et al.,
2003; Law et al,, 2002; Mueller et al., 2010; Vargas et al, 2010; Yadav et al, 2010; Yu et al, 2013]. One
exception is during summer over temperate coniferous forests, where none of the enviroclimatic drivers
are identified. As atmospheric data have been shown to be sensitive to the NEE variability within this
biome [Fang et al., 2014], the failure to identify enviroclimatic relationships may indicate that simple linear
relationships do not capture a substantial portion of the actual variability for this biome.

Relationships between NEE spatiotemporal variability and enviroclimatic drivers are identified both (1) for
biome-month combinations where TBMs were previously shown by Fang et al. [2014] to have relatively
high skill in representing the spatiotemporal variability of NEE, e.g., the growing season (May-September,
Figure 1), and (2) even for biome-month combinations where TBMs performed less reliably, e.g., the
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Figure 1. The biome (rows)-month (columns) combinations within which, neither enviroclimatic drivers nor TBMs (white),
only enviroclimatic drivers (magenta), only TBMs (orange), or both enviroclimatic drivers and TBMs (dark purple) are
identified as important for explaining the NEE variability using actual atmospheric CO, measurements. Only results from
four better constrained biomes are shown, namely: “Bore”: boreal forests and taiga; “TCoF”: temperate coniferous forests;
“TGSS": temperate grasslands, savannas, shrublands; and “TBMF": temperate broadleaf and mixed forests.

transition seasons (March—April and October-November, Figure 1). In other words, a linear combination with
enviroclimatic drivers can explain a portion of NEE variability for more biome-months than can process-based
models. This is a rather surprising outcome, as it means that linear relationships with enviroclimatic drivers
have stronger explanatory power than do TBMs in representing flux variability in some biomes and
months. This finding implies that TBMs may not capture the relationships between flux variability and
enviroclimatic drivers evident from atmospheric observations. Exploring which enviroclimatic drivers are
related to flux patterns within biome-months where TBMs perform better, and where they perform less
well, could therefore provide insights about how well specific processes are represented within TBMs. For
example, Fang et al. [2014] suggested that the seasonal variability in TBM performance may be attributable
to changes in the dominant enviroclimatic drivers across seasons at the scales observable through
atmospheric measurements. The experiments conducted here make it possible to test this hypothesis.

The approach applied here makes it possible, for the first time, to characterize the relationships between
enviroclimatic drivers and the spatiotemporal variability of fluxes within specific biome-month combinations
directly from atmospheric CO, observations, and to do so at scales similar to typical resolutions of TBMs run
for regional to continental analyses. Figure 2 shows the drift coefficients (ﬁ) between enviroclimatic drivers
and the spatiotemporal variability of NEE for each month, and within each of the four better constrained
biomes examined here. Snow depth and snow cover are not included in the figure because they were only
found to be good predictors for a total of three biome-month combinations. The presented drift coefficients
are based on enviroclimatic driver variables that have all been normalized (u=0; o=1), such that their
relative magnitudes are representative of each driver’s relative impact on flux patterns.

Results in Figure 2 indicate that shortwave radiation plays a dominant role in determining NEE spatiotemporal
variability in all four biomes during the growing season, which is also the time when TBMs perform best in
explaining flux patterns. During other months (e.g., the transition seasons), on the other hand, shortwave
radiation no longer acts as a dominant driver; instead, its relationship with NEE variability is only apparent for
some biome-months, and the magnitude of its drift coefficient is comparable to that of other drivers such as
specific humidity, precipitation, and/or temperature. Regardless of season, shortwave radiation is always
associated with a negative drift coefficient, indicating that an increase in shortwave radiation is associated
with increased carbon uptake. This result is consistent with the known relationship between radiation and
photosynthesis and with earlier site-level studies [Mueller et al., 2010; Yadav et al., 2010].

The inferred relationships between NEE and other drivers differ from that with shortwave radiation. A
relationship with specific humidity is apparent during spring and fall and is associated with a positive drift
coefficient, indicating a decrease in carbon uptake (or increase in carbon release) associated with
increased specific humidity. This relationship likely reflects the fact that heterotrophic respiration increases
with temperature and water abundance in most regions [Ise and Moorcroft, 2006; Lloyd and Taylor, 1994]. A
relationship with precipitation is identified mainly during winter and summer months, and an increase in
precipitation is typically associated with reduced carbon uptake (or increased carbon release). This is
consistent with pulses of respiration following rain events [Baldocchi, 2008; Huxman et al., 2004] and the
relationships between carbon fluxes and precipitation on short temporal scale (i.e., daily to weekly)
inferred by earlier studies based on eddy covariance measurement [Mueller et al., 2010; Yadav et al., 2010].

FANG AND MICHALAK

NEE RESPONSES TO ENVIROCLIMATIC DRIVERS 560



@AG U Global Biogeochemical Cycles

10.1002/2014GB005034

2
@ LK
g |,0009 o . o *0 e
s 0¥ v
£, ¢ L X ¢
© $ $
o
o ¢
= 4 é é Q é { Radiation
o % { Precipitation
-6 § TBMF TGSS
¢ Lag. Precip 16
> 0 ¢ Lag. Precip 30
@ LK 3 3 Rela. Humidity
g ole ® .
5 Q Y Spec. Humidity
2 A
= L4 O Air Temp.
g ¢ ¢t b ¢
S, 3 %,
E
-6 TCoF % Bore

Months

JFMAMJJASONDJFMAMJ.-JASOND

Months

Figure 2. The estimated drift coefficients (ﬁ) associated with enviroclimatic drivers identified as important in explaining
the NEE spatiotemporal variability using actual atmospheric CO, measurements over temperate broadleaf and mixed
forests (TBMF); temperate grasslands, savannas, and shrublands (TGSS); temperate coniferous forests (TCoF), and boreal
forests and taiga (Bore). The drivers include shortwave radiation (purple), precipitation (blue), 16 day lagged precipitation
(Lag. Precip 16, green), 30 day lagged precipitation (Lag. Precip 30, dark green), relative humidity (Rela. Humidity, gray),
specific humidity (Spec. Humidity, orange), and air temperature (Air Temp., red). Error bars show the uncertainty range of
B, i.e, o, the square root of the diagnoal elements of the uncertainty covariances (V[})

104 32 20 36

°
9

o
o

I
U

o
i

o
w

o
)

o
=

Percentage of models being selected

o

No SW 0-2 2-3 3-6
Drift Coefficients, B

Figure 3. The likelihood of a TBM being selected as important
in explaining the NEE spatiotemporal variability using actual
atmospheric measurements across all examined biome-
month combinations and TBMs, binned as follows: No SW
(shortwave radiation is not identified as an important covariate),
“0-2" (the impact of shortwave radiation is relatively weak
(0<P < 2)); “2-3" (the impact of shortwave radiation is
moderate (2<p < 3)) “3-6" (the impact of shortwave
radiation is strong ([32 3)). Green values on the top of the plot
indicate the number of biome-month-TBM combinations in
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3.2. Relationships Between NEE Spatiotemporal
Variability and Enviroclimatic Drivers as Implied
by TBMs

The findings in the previous subsection suggest a
connection between key enviroclimatic drivers and
model performance, with periods when TBMs
perform well corresponding to periods when NEE
spatiotemporal patterns are strongly related to
incoming shortwave radiation (ie, during the
growing season). Model performance is weaker, on
the other hand, during transition seasons when other
variables (e.g., specific humidity and precipitation) are
more directly related to NEE. This connection is
further illustrated in Figure 3, which shows the overall
likelihood of a model being identified as representing
a substantial portion of the NEE spatiotemporal
variability (across all 4 models, all 4 biomes, and all
12 months), as a function of the magnitude
of the estimated drift coefficient (B) associated with
shortwave radiation. When shortwave radiation is not
identified as an important covariate (“No SW"), or
when its impact on NEE spatiotemporal variability is
weak (0<f < 2)TBMs are almost never identified
as representing flux patterns consistently with what
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Figure 4. The estimated drift coefficients (fi) associated with shortwave radiation for cases where it is identified as important
in explaining the NEE spatiotemporal variability using actual atmospheric CO, measurements (solid line, diamonds) and using
synthetic observations assuming underlying fluxes as simulated by each of the four TBMs (dotted lines), with CASA-GFED
represented as circles, ORCHIDEE as upward pointing triangles, SiB3 as downward pointing triangles, and VEGAS as crosses,
over temperate and broadleaf mixed forests (TBMF); temperate grasslands, savannas and shrublands (TGSS); temperate
coniferous forests (TCoF); and boreal forests and taiga (Bore). Error bars show the uncertainty range of f, i.e., +of, the square
root of the diagnoal elements of the uncertainty covariances (VB)

can be observed from atmospheric measurements. TBMs perform better when the influence of shortwave is
stronger (25[3 < 3), and they are found to represent a substantial portion of the observed CO, variability

more than 50% of the time when shortwave radiation dominates (fi23). Although the specific cutoffs for
these ranges are somewhat subjective, the clear conclusion is that TBMs represent the spatiotemporal patterns
of NEE within specific biomes and months better when shortwave radiation is a controlling factor for NEE patterns.

Taken together, these results indicate that TBMs represent the impact of radiation on NEE better than the
impact of other enviroclimatic drivers, such as temperature and precipitation. This conclusion is further
confirmed when performing a similar analysis, but using synthetic atmospheric observations generated
using each of the examined TBMs (Figures S2-S5).

The relationships between shortwave radiation and NEE spatiotemporal variability inferred from synthetic
observations using TBM-generated fluxes are relatively consistent with those inferred using real observations
(Figure 4). TBMs generally capture the sign as well as the seasonal variation of the relationship between NEE
and shortwave radiation evident from atmospheric measurements.

However, they typically underestimate the peak of the  value, and hence the response of NEE to shortwave
radiation, especially for temperate and boreal forests. This result is consistent with the biased-low carbon
uptake and light use efficiency (LUE) found in site level studies during summers [Richardson et al., 2012;
Schaefer et al., 2012]. Those summer biases have been attributed to model underestimate of the peak leaf
area index (LAI) and therefore photosynthesis [Richardson et al., 2012]. LUE is related to various parameters,
such as potential conversion efficiency or carbon yield of absorbed energy and the stress terms related to
environmental factors [J. Wang et al,, 2014; Agren and Andersson, 2012; Cao et al., 2004] . It is possible that
during summers, either the conversion efficiency is underestimated and/or the stress terms are
overestimated. This bias is particularly strong over boreal forests and taiga, where the observations imply a
similar relationship to radiation as for temperate broadleaf and mixed forests, while the models suggest a
substantially weaker relationship. This result is consistent with Barr et al. [2007], who suggested that the
productivity of boreal forests may be similar to that of temperate forests.
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Additionally, during the transition seasons, TBMs do not capture the timing of the emergence and disappearance
of shortwave radiation as an important factor. For example, for temperate broadleaf and mixed forest, shortwave
radiation is first identified as an important driver from synthetic observations generated using NEE from
ORCHIDEE and SiB3, one month earlier than it is when using real observations (Figures S3 and S4). This finding
is consistent with earlier work that also pointed to challenges of TBMs in simulating phenology and hence the
seasonality of biospheric CO, flux [Richardson et al., 2012; Schaefer et al., 2012; Schwalm et al., 2010].

Relative to shortwave radiation, TBMs have more limited skill in representing the relationships associated
with temperature and water availability (Figures S2-S5 versus Figure 2). First, for about 80% of cases, those
enviroclimatic drivers (e.g., temperature, specific humidity, and precipitation) are associated with negative
drift coefficients (i.e., increase in sink or decrease in source), while they are associated with positive drift
coefficients (i.e., decrease in sink or increase in source) based on the real observations in about 90% of
cases. One example of this contrast is the impact of summertime precipitation. Second, relative to
relationships inferred from real observations, relationships between enviroclimatic drivers and NEE
patterns are evident for fewer biome-months when using synthetic observations based on TBM-generated
NEE, and these relationships occur during different months. For example, relative humidity is generally
selected as an important driver during spring and fall from real observations, but it is mostly identified as
a key explanatory variable during the summer based on TBMs. In some cases, both the timing and the sign
of the relationship are inconsistent, such as in the case of specific humidity over temperate grassland,
savannas, and shrublands, as well as over boreal forests and taiga.

Although our results are based on using NARR variables as the enviroclimatic drivers, we find that the choice of
the NARR data source and whether these same data were also used as driver data by the examined TBMs are
unlikely to significantly affect results. For example, SiB3 is driven by the same set of NARR drivers, and yet the
relationships between SiB3 NEE and NARR enviroclimatic drivers are not noticeably stronger relative to the
remaining models, which use other driver data sets (Figures S2-S5). Furthermore, ORCHIDEE (Figure S3) and
VEGAS2 (Figure S5) both use the same set of drivers [Huntzinger et al., 2012], and yet we observe substantial
differences in the relationships between their NEE and NARR data. These examples support the idea that the
choice of drivers is not the predominant determinant of the results observed here. Instead, the differences in
the simulated relationships between NEE and enviroclimatic drivers are likely more strongly attributable to
model internal structure, although this hypothesis could be further tested by repeating the experiments
outlined here using a set of models driven by a consistent set of driver data.

3.3. Implications for Continued TBM Development

The results of the analysis presented here point to three possible areas of opportunity for further
TBM development.

The first is to exploit data sets that can help to inform the covariation between the seasonality of phenology and
the seasonality of the dominance of radiation as a strong explanatory factor for NEE. Recent intercomparisons
have pointed to biases in TBMs in both the seasonality of gross primary product ion (GPP) and the magnitude of
its summertime peak [Schaefer et al,, 2012; Richardson et al., 2012; Schwalm et al., 2010; Abramowitz et al., 2008],
while results presented here show a similar picture for the role of radiation in explaining the spatiotemporal
variability of NEE within specific biomes and months. The increasing availability of global data sets that
capture the seasonality of phenology and fluxes may provide a path toward resolving these discrepancies.
For example, the incorporation of satellite-based global measurements of solar-induced fluorescence (SIF)
[Frankenberg et al.,, 2013; Guanter et al., 2014] into dynamic vegetation models has been shown to lead to
improvements in the structure of the seasonal cycle of GPP [Joiner et al, 2011; Parazoo et al., 2014]. In
addition, SIF can also constrain moisture impacts on stomatal conductance and GPP [Joiner et al., 2011; Lee
et al., 2013; Parazoo et al., 2014], thus providing insights into seasonal water stress.

The second area is to further explore how the relationship between fluxes and enviroclimatic drivers varies
under different environmental conditions (e.g., temperature and humidity). Such analyses, even if
conducted at finer spatial scales such as those represented by eddy covariance observations, could help to
identify conditions under which the relationship of fluxes with temperature and humidity as represented
in TBMs differ from observations. These insights could help to explain why TBMs appear not to capture the
timing of the emergence of temperature and humidity as key drivers, or the sign of their relationships to NEE
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at the scales examined here. To do so, the response of both observed and model-simulated GPP, respiration, and
NEE to temperature and humidity would need to be examined at intraseasonal timescales (e.g., hourly and
daily) within different humidity and temperature regimes. This strategy is supported by the fact that earlier
studies have shown that the response of GPP to temperature and humidity varies strongly across different
environmental conditions [e.g.,, Schaefer et al.,, 2012]. Using humidity as an example, Schaefer et al. [2012]
showed that the observed sensitivity of GPP to humidity is different when relative humidity is less than 40%,
between 40 and 70% and above 80%. The responses of heterotrophic and autotrophic respiration to
humidity and temperature have also been shown to vary under different environmental conditions [Bronson
et al., 2008; Gaumont-Guay et al., 2009; Lloyd and Taylor, 1994; Matthias et al., 2014].

The final area focuses on the scale dependence of the relationship between flux and precipitation. Results
presented here suggest that model-simulated NEE is negatively correlated to precipitation while CO,
observations suggest the opposite at the 3-hourly temporal scale. Eddy covariance measurements of GPP,
respiration and NEE could be used to examine how the relationships between fluxes and precipitation varies
across temporal scales, and how this scale dependency is represented in TBMs. Past work has shown that this
relationship is indeed scale dependent, with precipitation leading to short-term pulses in respiration [Baldocchi,
2008; Gourdji et al,, 2012; Huxman et al., 2004; Mueller et al,, 2010; Yadav et al,, 2010]. The response of NEE here
is consistent with this earlier work. However, we find that all four examined TBMs consistently show the
opposite relationship, more consistent with the expected relationship at longer timescales, where increased
precipitation leads to increased carbon uptake [Chimner and Welker, 2011; Piao et al., 2013; Rigge et al., 2013].

4. Conclusions

In this paper, we apply an atmospheric-inversion-based framework to investigate the responses of net
ecosystem CO, exchange (NEE) to enviroclimatic drivers at the 3-hourly and 1°x 1° resolution within North
American biomes in 2008. We further evaluate the capability of a subset of TBMs participating in the North
American Carbon Program (NACP) Regional Interim Synthesis (RIS) in representing those responses within
specific biome-month combinations.

We find that the relationships between NEE spatiotemporal variability and enviroclimatic drivers can be
inferred from atmospheric CO, measurements for 75% of the biome-month combinations over four better
constrained biomes (i.e., boreal forests and taiga; temperate coniferous forests; temperate grasslands,
savannas, and shrublands; and temperate broadleaf and mixed forests).

For the first time, we are able to characterize, directly from atmospheric CO, observations, the relationships
between enviroclimatic drivers and the spatiotemporal variability of NEE within a majority of North American
biomes. Results indicate a strong seasonality in relationships between NEE and drivers. Shortwave radiation is
clearly the dominant driver affecting NEE patterns over all four biomes during the growing season, with its
influence being highest in summer; during the nongrowing season, however, its role becomes either
comparable to that of other drivers or not apparent in our framework. Specific humidity is found to be a
more important driver mainly during spring and fall. Precipitation (and related drivers) is important during
both winter and summer, although its influence in summer is weaker than that of shortwave radiation.

By comparing the inferred relationships between NEE patterns and enviroclimatic drivers to the performance
of TBMs in simulating NEE patterns, a connection between key enviroclimatic drivers and model performance
emerges. TBMs typically perform well when NEE spatiotemporal patterns are strongly related to incoming
shortwave radiation (i.e., during the growing season), while their performance is weaker during transition
seasons when other drivers (e.g., specific humidity) are more strongly related to NEE.

Such a connection suggests that TBMs may have stronger skill in representing the impact of shortwave
radiation on NEE than that of the drivers related to temperature and water availability. TBMs are further
found to capture both the sign and the seasonal variation of the relationships between NEE and
shortwave radiation. In contrast, their skill in representing the relationships associated with temperature
and water availability is more limited, both in representing the sign and timing of the relationships.

The work presented here complements earlier studies on TBM model evaluation by using an empirical statistical
approach to assess NEE patterns at 3-hourly and 1°x 1° resolution, a typical resolution of TBMs run for regional to
continental analyses. It also complements previous assessments that focused on aggregated or plot scales in that
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it focuses more directly on the mechanistic representation of processes within the TBMs. By doing so, this study
sheds new light on possible avenues for further TBM development. Those areas include the following: (1) how
and when shortwave radiation emerges and disappears as a key driver controlling NEE patterns; (2) the
responses of NEE to temperature and humidity at intraseasonal scales (e.g., hourly, daily, and monthly); (3) the
scale dependency of the precipitation impact on NEE.
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